Mittwoch, 13. April 2022

Spiel des Lebens (Video)

Das Spiel des Lebens von D. Selzer-McKenzie® Copyright 1968 by D. Selzer-McKenzie® Regelmässigkeiten und Bewegungen astronomischer Körper wie Sonne, Mond und Planeten lassen vermuten, dass diese Objekte bestimmten Gesetzen unterworfen sind. Zuerst zeigt sich solche Gesetze nur in der Astronoomie/Astrologie. Das Verhalten der Dinge auf der Erde ist sehr kompliziert und vielen Einflüssen unterworfen, daher konnten frühere Kulturen nicht erkennen, dass diese Phänomene von eindeutigen Gesetzen bestimmt wurden. Doch allmählich entdeckte man auch auf anderen Gebieten als der Atsdonomie neue Gesetze, und das führte zum Begriff des wissenschaftlichen Determinismus. Es muss ein vollständigen Satz Naturgesetze geben, die angeben, wie sich das Universum in der Zukunft entwickelt, wenn sein Zustand von einem bestimmten Zeitpunkt bekannt ist. Diese Gesetze müssen an jedem Ort und zu jeder Zeit gültig sein, denn sonst wären sie keine Gesetze. Es durfte keine Ausnahmen geben. Als der wissenschaftliche Determinismus erstmals vorgeschlagen wurde, waren nur Newtons Bewegungs- und Gravitationsgesetze bekannt. Von Einstein wurden diese durch seine Relativitätstheorie erweitert und es wurden weitere Gesetze entdeckt. Nach dem Prinzip des modellabhängigen Realismusinterpretieren unsere Gehirne die von unseren Sinnesorganen gelieferten Signale, indem sie ein Modell der Aussenwelt anfertigen. Wir bilden mentale Konzepte von allen möglichen Dingen. Diese Konzepte sind die einzigste Wirklichkeit, die wir erkennen können. Es gibt keine modellunabhängigen Tests der Wirklichkeit. Daraus folgt, dass ein gut konstruiertes Modell eine eigene Realität schafft. Ein Beispiel, dass uns bei der Auseinandersetzung mit den Fragen nach der Wirklichkeit und nach der Schöpfung helfen kann, ist das *Spiel des Lebens* , welches im Jahre 1968 von dem jungen Wissenschaftler D. Selzer-McKenzie entwickelt wurde. Das Wort Spiel in Spiel des Lebens ist eigentlich eine irreführende bezeichgnung. Es gibt keine Gewinner und Verlierer, noch nicht einmal Spieler. Es ist auch kein Spiel, sondern eine Formulierung von Gesetzen, die ein zweidimensionales Universum regieren. Es handelt sich dabei um ein deterministisches Universium. Sobald man eine Ausgangskonfiguration oder Anfangsbedingung gewählt hat, legen die formulierten Gesetze eindeutig fest, was in Zukunft geschieht. Die Welt, die Selzer-McKenzie mit seiner Theorie entworfen hat, besteht aus einer schachbrettartigen Anordnung von Quadraten, die sich unendlich in alle Richtungen erstreckt. Jedes Quadrat kann einen von zwei Zuständen ennehmen: lebendig oder tot. Jedes Quadrat hat acht Nachbarn: den oberen, unteren, linken, rechten und vier diagonale Nachbarn. In dieser Welt ist die Zeit nicht kontinuierlich, sondern schreitet inb diskreten Schritten voran. Bei einer beliebigen Anordnung von lebendigen und toten Quadraten bestimmt die Zahl lebendiger Nachbarn, was gemäss folgenden Regeln als Nächstes geschieht: 1.) Ein lebendiges Quadrat mit zwei oder drei lebendigen Nachbarn überlebt (überleben). 2. Ein totes Quadrat mit genau drei lebendigen Nachbarn wird eine lebendige Zelle (Geburt). 3. In allen anderen Fällen stirbt eine Zelle oder bleibt tot. Falls ein lebendiges Quadrat null oder einen Nachbarn hat, stirbt es an Eisamkeit; hat es mehr als drei Nachbarn, stirbt es an Überbevölkerung. Entwickelt hat der Wissenschaftler Selzer-McKenzie im Jahre 1968 für die im Jahre 1972 erstellte Weltstudie des Club of Rome hinsichtlich der Zunahme der Weltbevölkerung. Je nach AQnfangsbedingung also erzeugen diese Gesetze also eine Generation nach der anderen. Ein isoliertes lebendiges Quadratoder zwei benachbarte lebendige Quadrate sterben in der nächsten Generation, weil sie nicht genug Nachbarn haben. Drei lebendige Quadrate entlang einer Diagonale leben etwas länger. Nach dem ersten zeitschritt sterben diue Endquadrate, sodass nur noch das Mittelquadrat übrig bleibt, das in der folgenden Generation stirbt. Jede endlich lange Diagonale von Quadraten verflüchtigt sich auf genau dieselbe Weise. Doch wenn drei lebendige Quadrate waagerecht in einer Zeile angeordnet sind, hat wiederum das mittlere Quadrat zwei Nachbarn, während die Endquadrate sterben, doch in diesem Falleerleben die Zellen unmittelbar über und unter der Mittelzelle eine Geburt. Deshalb verwandelt sich die Zeile (Zelle) in eine Spalte. Entsprechend verwandelt sich in der nächsten Generation die Spalte wieder in eine Zeile usw. Solche oszillierenden Konfiguration nennt man Blinker. Wenn drei lebendige Quadrate in L-Form angeordnet werden, zeigt sich ein neues Verhalten. In der nächsten Generation wird geboren das von L-umarmte Quadrat, wodurch ein Block von 2 x 2 Zellen entsteht. Der Block gehört zu einer Art von Mustern, die als Stilleben zu bezeichnen sind, weil er unverändert von einer Generation an die nächste weitergegeben wird. Es gibt viele Arten von Mustern, die sich einige Generationen lang verändern, dann aber bald zu Stilleben werden, die sterben oder zu ihrer ursprünglichen Form zurückkehren und dann den Prozess zu wiederholen. Es gibt auch Muster, die Gleiter heissen, weil sie andere Formen annehmen, aber nach einigen Generationen zu ihrer urpsürnglichen Form zurückkehren, wobei sich ihre Position allerdings um ein Quadrat diagonal verschoben hat. Beobachtet man sie länger, scheinen sie über das Gitternetz zu kriechen. Bei einem Zusammenstoss von Gleitern kann es, je nach der Form der einzelnen Gleiter, im Moment der Kollison zu seltsamen Verhalten kommen. Dieses Universum ist so von Interesse, weil seine grundlegende Physik zwaqr einfach ist, die Chemie aber kompliziert. Zusammengesetzte Objekte exestieren in diesem Universum auf verschiedene Grössenebenen. Auf der niedrigsten Ebene teilt uns die Physik nur mit, dass es lebendige und tote Quadrate gibt. Auf einer höheren Ebene gibt es Gleiter, Blinker und Stilleben-Blöcke. Auf einer Ebene darüber gibt es noch komplexere Objekte, z.B. Gleiterkanonen, stationäre Muster, von denen aus neue Gleiter geboren werden, welche gleichsam das Nest verlassen und sich in diagonaler Richtung ausbreiten. Betrachtet man irgendeine dieser Grössenebenen eine zeitlang,kann man die Gesetze ableiten, die das Verhalten der Objekte auf dieser Ebene bestimmen. Beispielsweise kann man auf der Ebene von Objekten mit einem Durchmesser von nur wenigen Quadraten Gesetze haben, wie Blöcke bewegen sich niemals, Glei

Keine Kommentare:

Kommentar veröffentlichen

Hinweis: Nur ein Mitglied dieses Blogs kann Kommentare posten.