import numpy as np
import scipy.special
import copy
class MLPNet:
def __init__(self, hiddenlayer=(10,10),classification=False):
self.hl = hiddenlayer; self.classification = classification
self.xMin = 0.0; self.xMax = 1.0
self.W = []
self._sigmoid = lambda x: scipy.special.expit(x)
def _initWeights(self):
self.W.append((np.random.rand(self.hl[0],self.il) - 0.5 ))
self.W.append((np.random.rand(self.hl[1],self.hl[0]) - 0.5))
self.W.append((np.random.rand(self.ol,self.hl[1]) - 0.5))
def _calOut(self,X):
O1 = self._sigmoid(self.W[0]@X.T)
O2 = self._sigmoid(self.W[1]@O1)
y = (self.W[len(self.W)-1]@O2).T
return(y)
def predict(self,X):
X = (X - self.xMin) / (self.xMax - self.xMin)
X = np.hstack( (X,np.ones(X.shape[0])[:,None]) )
y = self._calOut(X)
if self.classification: y = np.round(y) #*\label{code:fullmlpbatch:1}
return(y)
def fit(self,X,Y,eta=0.75,maxIter=200,vareps=10**-3,scale=True,XT=None,YT=None): #*\label{code:fullmlpbatch:4}
self.xMin = X.min(axis=0) if scale else 0
self.xMax = X.max(axis=0) if scale else 1
X = (X - self.xMin) / (self.xMax - self.xMin)
X = np.hstack( (X,np.ones(X.shape[0])[:,None]) )
if len(Y.shape) == 1:
Y = Y[:,None]
self.il = X.shape[1]
self.ol = Y.shape[1] #*\label{code:fullmlpbatch:morethanone}
self._initWeights()
(XVal, YVal, X, Y) = self._divValTrainSet(X,Y) #*\label{code:fullmlpbatch:3}
self.train(X,Y,XVal,YVal,eta,maxIter,vareps,XT,YT)
def train(self,X,Y,XVal=None,YVal=None,eta=0.75,maxIter=200,vareps=10**-3,XT=None,YT=None):
if XVal is None: (XVal, YVal, X, Y) = self._divValTrainSet(X,Y)
if len(Y.shape) == 1: Y = Y[:,None]
if len(YVal.shape) == 1: YVal = YVal[:,None]
if self.il != X.shape[1]: X = np.hstack( (X,np.ones(X.shape[0])[:,None]) )
if self.il != XVal.shape[1]: XVal = np.hstack( (XVal,np.ones(XVal.shape[0])[:,None]) )
dW = []
for i in range(len(self.W)):
dW.append(np.zeros_like(self.W[i]))
yp = self._calOut(XVal)
if self.classification: yp = np.round(yp)
meanE = (np.sum((YVal-yp)**2)/XVal.shape[0])/YVal.shape[1]
minError = meanE
minW = copy.deepcopy(self.W)
self.errorVal=[]; self.errorTrain=[]; self.errorTest=[] #*\label{code:fullmlpbatch:2}
mixSet = np.random.choice(X.shape[0],X.shape[0],replace=False)
counter = 0
while meanE > vareps and counter < maxIter:
counter += 1
for m in range(self.ol): #*\label{code:fullmlpbatch:5}
for i in mixSet:
x = X[i,:]
O1 = self._sigmoid(self.W[0]@x.T)
O2 = self._sigmoid(self.W[1]@O1)
temp = self.W[2][m,:]*O2*(1-O2)[None,:]
dW[2] = O2
dW[1] = temp.T@O1[:,None].T
dW[0] = (O1*(1-O1)*(temp@self.W[1])).T@x[:,None].T
yp = self._calOut(x)[m]
yfactor = np.sum(Y[i,m]-yp)
for j in range(len(self.W)):
self.W[j] += eta * yfactor* dW[j]
yp = self._calOut(XVal)
if self.classification: yp = np.round(yp)
meanE = (np.sum((YVal-yp)**2)/XVal.shape[0])/YVal.shape[1] #*\label{code:fullmlpbatch:6}
self.errorVal.append(meanE)
if meanE < minError:
minError = meanE
minW = copy.deepcopy(self.W)
self.valChoise = counter
if XT is not None:
yp = self.predict(XT)
if len(YT.shape) == 1: YT = YT[:,None];
meanETest = (np.sum((YT-yp)**2)/XT.shape[0])/YT.shape[1]
self.errorTest.append(meanETest)
yp = self._calOut(X)
if self.classification:
yp = np.round(yp)
meanETrain = (np.sum((Y-yp)**2)/X.shape[0])/Y.shape[1]
self.errorTrain.append(meanETrain)
self.W = copy.deepcopy(minW)
def _divValTrainSet(self, X,Y):
self.ValSet = np.random.choice(X.shape[0],int(X.shape[0]*0.25),replace=False)
self.TrainSet = np.delete(np.arange(0, Y.shape[0] ), self.ValSet)
XVal = X[self.ValSet,:]
YVal = Y[self.ValSet]
X = X[self.TrainSet,:]
Y = Y[self.TrainSet]
return (XVal, YVal, X, Y)
def exportNet(self, filePrefix):
np.savetxt(filePrefix+"MinMax.csv", np.array([self.xMin, self.xMax]), delimiter=",")
np.savetxt(filePrefix+"W0.csv", self.W[0], delimiter=",")
np.savetxt(filePrefix+"W1.csv", self.W[1], delimiter=",")
np.savetxt(filePrefix+"W2.csv", self.W[2], delimiter=",")
def importNet(self,filePrefix, classification=False):
MinMax = np.loadtxt(filePrefix+'MinMax.csv',delimiter=",")
W2 = np.loadtxt(filePrefix+'W2.csv',delimiter=",")
W1 = np.loadtxt(filePrefix+'W1.csv',delimiter=",")
W0 = np.loadtxt(filePrefix+'W0.csv',delimiter=",")
self.W = [W0,W1,W2]
self.hl = (W0.shape[0], W2.shape[1])
self.il = W0.shape[1]
self.ol = W2.shape[0]
self.xMin = MinMax[0]
self.xMax = MinMax[1]
self.classification = classification
if __name__ == '__main__':
np.random.seed(42)
X = np.random.rand(1250,2)
Y = np.zeros( (1250,2) )
index1 = (X[:,0] - 0.25)**2 + (X[:,1] - 0.25)**2 < 0.2**2
Y[index1,0] = 1
index2 = (X[:,0] - 0.75)**2 + (X[:,1] - 0.75)**2 < 0.2**2
Y[index2,1] = 1
TrainSet = np.random.choice(X.shape[0],int(X.shape[0]*0.70), replace=False)
XTrain = X[TrainSet,:]
YTrain = Y[TrainSet]
TestSet = np.delete(np.arange(0, len(Y) ), TrainSet)
XTest = X[TestSet,:]
YTest = Y[TestSet]
myPredict = MLPNet(hiddenlayer=(24,24),classification=True)
myPredict.fit(XTrain,YTrain,maxIter=1200, XT=XTest , YT=YTest)
yp = myPredict.predict(XTest)
fp = np.sum(np.abs(yp - YTest))/len(TestSet)*100
print('richtig klassifiziert %0.1f%%' % (100-fp))
print('falsch klassifiziert %0.1f%%' % (fp))
myPredict.exportNet('foobar')
justTest = MLPNet()
justTest.importNet('foobar',classification=True)
yp = justTest.predict(XTest)
fp = np.sum(np.abs(yp - YTest))/len(TestSet)*100
print('richtig klassifiziert %0.1f%%' % (100-fp))
print('falsch klassifiziert %0.1f%%' % (fp))
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
plt.close('all')
fig1 = plt.figure(1)
ax = fig1.add_subplot(1,1,1)
circle1 = plt.Circle((0.25, 0.25), 0.2, color='k', alpha=0.3)
circle2 = plt.Circle((0.75, 0.75), 0.2, color='k', alpha=0.3)
ax.add_artist(circle1)
ax.add_artist(circle2)
index1 = np.logical_and( (XTest[:,0] - 0.25)**2 + (XTest[:,1] - 0.25)**2 < 0.2**2 , yp[: ,0]==0 )
ax.scatter(XTest[index1,0],XTest[index1,1], marker='v',c='r')
index2 = np.logical_and( (XTest[:,0] - 0.75)**2 + (XTest[:,1] - 0.75)**2 < 0.2**2, yp[: ,1]==0 )
ax.scatter(XTest[index2,0],XTest[index2,1], marker='^',c='r')
ax.scatter(XTest[yp[:,0]==1,0],XTest[yp[:,0]==1,1], marker='+',c='k')
ax.scatter(XTest[yp[:,1]==1,0],XTest[yp[:,1]==1,1], marker='o',c='k')
ax.set_xlabel('$x_0$')
ax.set_ylabel('$x_1$')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
ax.axis('equal')
fig3 = plt.figure(3)
ax = fig3.add_subplot(1,1,1)
epochen = np.arange(len(myPredict.errorVal))
ax.plot(epochen, np.array(myPredict.errorVal), 'r-.' , label='Validierung')
ax.plot(epochen, np.array(myPredict.errorTest), 'k--', label='Test')
ax.plot(epochen, np.array(myPredict.errorTrain), 'k:', label='Training' )
ax.legend()
ax.set_xlabel('Lernzyklus')
ax.set_ylabel('Durchschnittlicher Fehler')
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
import numpy as np
np.random.seed(42)
fFloat = open("Autoklassifizierung.csv","r")
dataset = np.loadtxt(fFloat, delimiter=",")
fFloat.close()
y = dataset[:,0]
x = np.ones( (len(y),3) ) #*\label{code:heblernen1}
x[:,0:2] = dataset[:,1:3] #*\label{code:heblernen2}
xMin = x[:,0:2].min(axis=0); xMax = x[:,0:2].max(axis=0)
x[:,0:2] = (x[:,0:2] - xMin) / (xMax - xMin) #*\label{code:heblernen3}
t = 0; tmax=100000
eta = 0.25
Dw = np.zeros(3)
w = np.random.rand(3) - 0.5
convergenz = 1
def myHeaviside(x):
y = np.ones_like(x,dtype=np.float)
y[x <= 0] = 0
return(y)
while (convergenz > 0) and (t
WaehleBeispiel = np.random.randint(len(y))
xB = x[WaehleBeispiel,:].T
yB = y[WaehleBeispiel]
error = yB - myHeaviside(w@xB)
for j in range(len(xB)):
Dw[j]= eta*error*xB[j]
w[j] = w[j] + Dw[j]
convergenz = np.linalg.norm(y-myHeaviside(w@x.T))
def predict(x,w,xMin,xMax):
xC = np.ones( (x.shape[0],3) )
xC[:,0:2] = x
xC[:,0:2] = (xC[:,0:2] - xMin) / (xMax - xMin); print(xC)
y = w@xC.T
y[y>0] = 1
y[y<= 0] = 0
return(y)
# SEAT Ibiza, Sokda Octavia, Toyota Avensis und Yaris GRMN
xTest = np.array([[12490, 48], [31590, 169],[24740, 97], [30800, 156]])
yPredict = predict(xTest,w,xMin,xMax)
print(yPredict)
import matplotlib.pyplot as plt
from matplotlib import cm
a= np.linspace(-1, 1, 50)
b=-w[0]/w[1]*a-w[2]/w[1]
fig = plt.figure(1)
ax = fig.add_subplot(1,1,1)
ax.plot(a,b,'k', linewidth=1.5, linestyle='dashed')
indexA = np.flatnonzero(y>0.5)
indexB = np.flatnonzero(y<0 .5="" br="">ax.scatter(x[indexA,0],x[indexA,1],color='red', marker='o')
ax.scatter(x[indexB,0],x[indexB,1],color='black', marker='+')
ax.set_xlabel('$x_0$')
ax.set_ylabel('$x_1$')
ax.set_ylim([-0.25,1.25])
ax.set_xlim([0,1])
ax.set_title("Berechnet mit Random Seed 42")0>
xBool = np.array([[1, 0],[0, 1],[1, 1],[0, 0]])
w = np.array([1, 1, -0.5])
print(predict(xBool,w,0,1))
w = np.array([1, 1, -1.5])
print(predict(xBool,w,0,1))
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
import numpy as np
from simpleMLP import simpleMLP
np.random.seed(42)
X = np.random.rand(1250,2)
Y = np.zeros(1250)
index = (X[:,0] - 0.5)**2 + (X[:,1] - 0.5)**2 < 0.2**2
Y[index] = 1
TrainSet = np.random.choice(X.shape[0],int(X.shape[0]*0.80), replace=False)
XTrain = X[TrainSet,:]
YTrain = Y[TrainSet]
falsePositive = np.random.choice(len(TrainSet),int(len(TrainSet)*0.15), replace=False) #*\label{code:kreislernendreck:1}
YTrain[falsePositive] = 1 #*\label{code:kreislernendreck:2}
TestSet = np.delete(np.arange(0, len(Y) ), TrainSet)
XTest = X[TestSet,:]
YTest = Y[TestSet]
myPredict = simpleMLP(hiddenlayer=(120,120))
myPredict.fit(XTrain,YTrain,maxIter=600)
yp = myPredict.predict(XTest)
diff = np.abs(np.round(yp).T - YTest)
fp = np.sum(diff)/len(TestSet)*100
print('richtig klassifiziert %0.1f%%' % (100-fp))
print('falsch klassifiziert %0.1f%%' % (fp))
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig1 = plt.figure(1)
ax = fig1.add_subplot(1,1,1)
ax.scatter(XTrain[:,0],XTrain[:,1],c =YTrain, marker='o', edgecolors='k', cmap=cm.Greys)
ax.set_xlabel('$x_0$')
ax.set_ylabel('$x_1$')
fig2 = plt.figure(2)
ax = fig2.add_subplot(1,1,1)
epochen = np.arange(len(myPredict.error))
ax.plot(epochen, np.array(myPredict.error), 'k' )
ax.set_xlabel('Lernzyklus')
ax.set_ylabel('Durchschnittlicher Fehler')
fig1 = plt.figure(3)
ax = fig1.add_subplot(1,1,1)
ax.scatter(XTest[:,0],XTest[:,1],c =np.round(yp).reshape(yp.shape[0]), marker='o', edgecolors='k', cmap=cm.Greys)
ax.set_xlabel('$x_0$')
ax.set_ylabel('$x_1$')
..............................................
import numpy as np
import matplotlib.pyplot as plt
from fullMLP import MLPNet
def regressionPlot(x,y,network,setName=''):
yp = network.predict(x) #*\label{code:regPlot:0}
A = np.ones( (x.shape[0],2) ) #*\label{code:regPlot:1}
A[:,0] = yp.reshape(x.shape[0]) #*\label{code:regPlot:2}
m, c= np.linalg.lstsq(A,y)[0] #*\label{code:regPlot:3}
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
myTitle = '%s: %f * x + %f ' %(setName, m,c)
ax.set_title(myTitle)
ax.scatter(yp,y, marker='+', color=(0.5,0.5,0.5))
ax.set_xlabel('ANN Output')
ax.set_ylabel('Data Set')
alpha = min(yp.min(),y.min())
omega = max(yp.max(),y.max())
xPlot = np.linspace(alpha,omega,10)
ax.plot(xPlot,xPlot,'k')
ax.plot(xPlot,xPlot*m+c,'r--')
ax.set_xlim([alpha,omega])
ax.set_ylim([alpha,omega])
np.random.seed(42)
fFloat = open("BostonFeature.csv","r")
X = np.loadtxt(fFloat, delimiter=","); fFloat.close()
fFloat = open("BostonTarget.csv","r")
Y = np.loadtxt(fFloat, delimiter=","); fFloat.close()
yMin = Y.min(axis=0); yMax = Y.max(axis=0)
Y = (Y - yMin) / (yMax - yMin)
TrainSet = np.random.choice(X.shape[0],int(X.shape[0]*0.80), replace=False)
XTrain = X[TrainSet,:]; YTrain = Y[TrainSet]
TestSet = np.delete(np.arange(0, len(Y) ), TrainSet)
XTest = X[TestSet,:]; YTest = Y[TestSet]
myPredict = MLPNet(hiddenlayer=(10,10))
myPredict.fit(XTrain,YTrain, eta=0.5, maxIter=1000, XT=XTest , YT=YTest)
regressionPlot(XTest,YTest,myPredict, setName='Testset')
regressionPlot(X,Y,myPredict, setName='All Data')
regressionPlot(XTrain[myPredict.TrainSet,:],YTrain[myPredict.TrainSet],myPredict, setName='Trainingset')
regressionPlot(XTrain[myPredict.ValSet,:],YTrain[myPredict.ValSet],myPredict, setName='Validationset')
ypTest = myPredict.predict(XTest)
print('Mittlerer Fehler %0.2f' % (np.mean(np.abs(ypTest - YTest[:,None]))))
yp = myPredict.predict(XTrain)
yp = yp.reshape(yp.shape[0])
error = (yMax - yMin)*(yp - YTrain)
print(np.mean(np.abs(error)))
import matplotlib.pyplot as plt
fig1 = plt.figure()
ax = fig1.add_subplot(1,1,1)
epochen = np.arange(len(myPredict.errorVal))
ax.plot(epochen, np.array(myPredict.errorVal), 'r-.' , label='Validierung')
ax.plot(epochen, np.array(myPredict.errorTest), 'k--', label='Test')
ax.plot(epochen, np.array(myPredict.errorTrain), 'k:', label='Training' )
ax.legend()
ax.set_xlabel('Lernzyklus')
ax.set_ylabel('Durchschnittlicher Fehler')
yp = myPredict.predict(XTest)
yp = yp.reshape(yp.shape[0])
errorT = (yMax - yMin)*(yp - YTest)
print(np.mean(np.abs(errorT)))
fig = plt.figure()
ax = fig.add_subplot(1,2,1)
ax.set_title('Verteilung der Abweichungen auf der Trainingsmenge')
ax.hist(error,color='gray')
ax.set_xlabel('Abweichung in Tausenden')
ax.set_ylabel('Anzahl')
ax = fig.add_subplot(1,2,2)
ax.set_title('Verteilung der Abweichungen auf der Testmenge')
ax.hist(errorT,color='gray')
ax.set_xlabel('Abweichung in Tausenden')
ax.set_ylabel('Anzahl')
:::::::::::::::::::::::::::::::::::::::
import numpy as np
import scipy.special
import copy
class simpleMLP:
def __init__(self, hiddenlayer=(10,10)):
self.hl = hiddenlayer
self.xMin = 0.0; self.xMax = 1.0
self.W = []
self._sigmoid = lambda x: scipy.special.expit(x)
def _initWeights(self):
self.W.append((np.random.rand(self.hl[0],self.il) - 0.5 ))
self.W.append((np.random.rand(self.hl[1],self.hl[0]) - 0.5))
self.W.append((np.random.rand(self.ol,self.hl[1]) - 0.5))
def _calOut(self,X):
O1 = self._sigmoid(self.W[0]@X.T)
O2 = self._sigmoid(self.W[1]@O1)
y = (self.W[len(self.W)-1]@O2).T
return(y)
def predict(self,X):
X = (X - self.xMin) / (self.xMax - self.xMin) #*\label{code:mlpbatch:predict:norm}
X = np.hstack( (X,np.ones(X.shape[0])[:,None]) ) #*\label{code:mlpbatch:bias1}
y = self._calOut(X)
return(y)
def fit(self,X,Y,eta=0.75,maxIter=200,vareps=10**-3,scale=True):
self.xMin = X.min(axis=0) if scale else 0
self.xMax = X.max(axis=0) if scale else 1
X = (X - self.xMin) / (self.xMax - self.xMin)
X = np.hstack( (X,np.ones(X.shape[0])[:,None]) ) #*\label{code:mlpbatch:bias2}
if len(Y.shape) == 1:
Y = Y[:,None]
self.il = X.shape[1] #*\label{code:mlpbatch:initw1}
self.ol = 1
self._initWeights() #*\label{code:mlpbatch:initw2}
self.train(X,Y,eta,maxIter,vareps)
def train(self,X,Y,eta,maxIter=200,vareps=10**-3):
if len(Y.shape) == 1: Y = Y[:,None]
if self.il != X.shape[1]: X = np.hstack( (X,np.ones(X.shape[0])[:,None]) )
dW = [] #*\label{code:mlpbatch:initdw:s}
for i in range(len(self.W)):
dW.append(np.zeros_like(self.W[i])) #*\label{code:mlpbatch:initdw:e}
yp = self._calOut(X)
meanE = np.sum((Y-yp)**2)/X.shape[0] #*\label{code:mlp:error:1}
minError = meanE #*\label{code:mlp:error:2}
minW = copy.deepcopy(self.W) #*\label{code:mlp:error:3}
self.error=[] #*\label{code:mlp:error:4}
mixSet = np.random.choice(X.shape[0],X.shape[0],replace=False) #*\label{code:mlp:mischen}
counter = 0
while meanE > vareps and counter < maxIter: #*\label{code:mlpbatch:abbruch}
counter += 1
for i in mixSet: #*\label{code:mlpbatch:-1}
x = X[i,:]
O1 = self._sigmoid(self.W[0]@x.T)
O2 = self._sigmoid(self.W[1]@O1)
temp = self.W[2]*O2*(1-O2)[None,:]
dW[2] = O2 #*\label{code:mlpbatch:2}
dW[1] = temp.T@O1[:,None].T #*\label{code:mlpbatch:3}
dW[0] = (O1*(1-O1)*(temp@self.W[1])).T@x[:,None].T #*\label{code:mlpbatch:4}
yp = self._calOut(x)
yfactor = np.sum(Y[i]-yp)
for j in range(len(self.W)): #*\label{code:mlpbatch:update}
self.W[j] += eta * yfactor* dW[j]
yp = self._calOut(X) #*\label{code:mlperror:1}
meanE = (np.sum((Y-yp)**2)/X.shape[0])
self.error.append(meanE)
if meanE < minError:
minError = meanE
minW = copy.deepcopy(self.W) #*\label{code:mlperror:2}
self.W = copy.deepcopy(minW) #*\label{code:mllcopy}
if __name__ == '__main__':
np.random.seed(42)
XTrain = np.random.rand(2500,2)
YTrain = np.sin(2*np.pi*(XTrain[:,0] + 0.5*XTrain[:,1])) + 0.5*XTrain[:,1]
Noise = np.random.rand(YTrain.shape[0]) - 0.5
YTrain = (1+ 0.05*Noise)*YTrain
XTest = np.random.rand(500,2)
YTest = np.sin(2*np.pi*(XTest[:,0] + 0.5*XTest[:,1])) + 0.5*XTest[:,1]
myPredict = simpleMLP(hiddenlayer=(8,8))
myPredict.fit(XTrain,YTrain)
yp = np.squeeze(myPredict.predict(XTest))
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig1 = plt.figure(1)
ax = fig1.add_subplot(1,1,1, projection='3d')
ax.scatter(XTest[:,0],XTest[:,1],yp,alpha=0.6,c =yp, cmap=cm.Greys)
ax.set_xlabel('x[0]')
ax.set_ylabel('x[1]')
ax.set_zlabel('$y_p$')
fig2 = plt.figure(2)
ax = fig2.add_subplot(1,1,1, projection='3d')
ax.scatter(XTest[:,0],XTest[:,1],yp.T-YTest,alpha=0.6,c =yp.T-YTest, cmap=cm.Greys)
ax.set_xlabel('x[0]')
ax.set_ylabel('x[1]')
ax.set_zlabel('$y_p - y$')
fig3 = plt.figure(3)
ax = fig3.add_subplot(1,1,1)
epochen = np.arange(len(myPredict.error))
ax.plot(epochen, np.array(myPredict.error), 'k' )
ax.set_xlabel('Lernzyklus')
ax.set_ylabel('Durchschnittlicher Fehler')
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
import numpy as np
from simpleMLP import simpleMLP
np.random.seed(42)
X = np.random.rand(1250,2)
Y = np.zeros(1250)
index = (X[:,0] - 0.25)**2 + (X[:,1] - 0.25)**2 < 0.2**2
Y[index] = 1
index = (X[:,0] - 0.75)**2 + (X[:,1] - 0.75)**2 < 0.2**2
Y[index] = 2
TrainSet = np.random.choice(X.shape[0],int(X.shape[0]*0.70), replace=False)
XTrain = X[TrainSet,:]
YTrain = Y[TrainSet]
TestSet = np.delete(np.arange(0, len(Y) ), TrainSet)
XTest = X[TestSet,:]
YTest = Y[TestSet]
myPredict = simpleMLP(hiddenlayer=(32,32))
myPredict.fit(XTrain,YTrain,maxIter=2000)
yp = myPredict.predict(XTest)
diff = np.abs(np.round(yp.T) - YTest).astype(bool)
fp = np.sum(diff)/len(TestSet)*100
print('richtig klassifiziert %0.1f%%' % (100-fp))
print('falsch klassifiziert %0.1f%%' % (fp))
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
plt.close('all')
fig1 = plt.figure(1)
ax = fig1.add_subplot(1,1,1)
ax.scatter(XTrain[:,0],XTrain[:,1],c =YTrain, marker='o', edgecolors='k', cmap=cm.Greys)
ax.set_xlabel('$x_0$')
ax.set_ylabel('$x_1$')
fig2 = plt.figure(2)
ax = fig2.add_subplot(1,1,1)
epochen = np.arange(len(myPredict.error))
ax.plot(epochen, np.array(myPredict.error), 'k' )
ax.set_xlabel('Lernzyklus')
ax.set_ylabel('Durchschnittlicher Fehler')
yp = yp.reshape(XTest.shape[0])
fig3 = plt.figure(3)
ax = fig3.add_subplot(1,1,1, projection='3d')
ax.scatter(XTest[:,0],XTest[:,1],yp,alpha=0.6,c =yp, cmap=cm.Greys)
ax.set_xlabel('x[0]')
ax.set_ylabel('x[1]')
ax.set_zlabel('$y_p$')
::::::::::::::::::::::::::::::::::::::::::::::::::::::
Keine Kommentare:
Kommentar veröffentlichen
Hinweis: Nur ein Mitglied dieses Blogs kann Kommentare posten.