Sonntag, 10. Januar 2016

Supernovae


Supernovae

Author D.Selzer-McKenzie

Video: https://youtu.be/rsIcrzUYWqE

17 % hochgeladen

Noch 2 Minuten.

Einige Änderungen wurden noch nicht gespeichert.

 

    Allgemeine Informationen

    Übersetzungen

    Monetarisierung

    Erweiterte Einstellungen

 

Eine Supernova (Plural Supernovæ, eingedeutscht Supernovae oder Supernovä) ist das kurzzeitige, helle Aufleuchten eines massereichen Sterns am Ende seiner Lebenszeit durch eine Explosion, bei der der ursprüngliche Stern selbst vernichtet wird. Die Leuchtkraft des Sterns nimmt dabei millionen- bis milliardenfach zu, er wird für kurze Zeit so hell wie eine ganze Galaxie.

 

Der Begriff der Nova leitet sich ab von dem lateinischen Ausdruck „stella nova“ (neuer Stern) und geht zurück auf den von Tycho Brahe geprägten Namen einer Beobachtung eines Sterns im Jahr 1572.[1] Er bezieht sich auf das plötzliche Auftauchen eines vorher nicht sichtbaren sternähnlichen Objektes am Firmament. Unter einer Nova verstand man bis zur Mitte des 20. Jahrhunderts jede Art von Helligkeitsausbruch eines Sterns mit einem Anstieg zum Maximum in einem Zeitraum von Tagen bis Jahren und einer Rückkehr zur früheren Helligkeit innerhalb von Wochen bis Jahrzehnten. Als die astrophysikalische Ursache der Eruptionen erkannt wurde, wandelte sich der Begriff zu der heutigen Definition, bei der eine Supernova nicht mehr zu den Novae in ihrer ursprünglichen Bedeutung zählt.

 

Es gibt zwei grundsätzliche Mechanismen, nach denen Sterne zur Supernova werden können:

 

    Massereiche Sterne mit einer Anfangsmasse von mehr als etwa acht Sonnenmassen, deren Kern am Ende ihrer Entwicklung und nach Verbrauch ihres nuklearen Brennstoffs kollabiert. Hierbei kann ein kompaktes Objekt, etwa ein Pulsar oder ein Schwarzes Loch, entstehen. Dieser Vorgang wird als Kollaps- bzw. hydrodynamische Supernova bezeichnet.

    Sterne mit geringerer Masse, die in ihrem vorläufigen Endstadium als Weißer Zwerg Material (z. B. von einem Begleiter in einem Doppelsternsystem) akkretieren, durch Eigengravitation kollabieren und dabei durch einsetzendes Kohlenstoffbrennen zerrissen werden. Dieses Phänomen wird als thermonukleare Supernova oder Supernova vom Typ Ia bezeichnet.

 

Bekannte Supernovae sind die Supernova 1987A in der Großen Magellanschen Wolke und die Keplersche Supernova 1604. Speziell letztere und die Brahesche Supernova 1572 haben die Astronomie beflügelt, da dadurch die klassische Auffassung von der Unveränderlichkeit der Fixsternsphäre endgültig widerlegt wurde. Der bekannteste Supernova-Überrest ist der Krebsnebel (SN1054) im Sternbild Stier.

 

Historische Supernovae Jahr   Beobachtet in        maximale scheinbare Helligkeit

185    Sternbild Zentaur            −6 mag

386    Sternbild Schütze            +1,5[2]

393    Sternbild Skorpion          −3 mag

1006 Sternbild Wolf       −7,5 ± 0,4[3]

1054 Sternbild Stier       −6 mag

1181 Sternbild Kassiopeia       −2 mag

1572 Sternbild Kassiopeia       −4 mag

1604 Sternbild Schlangenträger       −2 mag

1680 Sternbild Kassiopeia       +6 mag

1885 Andromedanebel             +6 mag

1979 Galaxie Messier 100       +11,6 mag

1987 Große Magellansche Wolke    +3 mag

2014 Galaxie Messier 82         +10,5 mag

 

Supernovae werden mit dem Vorsatz „SN“, ihrem Entdeckungsjahr und einem alphabetischen Zusatz benannt. Ursprünglich bestand dieser Zusatz aus einem Großbuchstaben, der alphabetisch in der Reihenfolge der Entdeckung vergeben wurde. So war SN 1987A die erste im Jahr 1987 entdeckte Supernova. 1954 wurden (in fernen Galaxien) erstmals mehr als 26 Supernovae in einem Jahr entdeckt. Seither werden ab der 27. Supernova eines Jahres kleine Doppelbuchstaben (von „aa“ bis „zz“) vergeben. Mit heutigen Großteleskopen und speziellen Suchprogrammen werden jedes Jahr mehrere Hundert Supernovae entdeckt: 2005 waren es 367 (bis SN 2005nc), 2006 waren es 551 (bis SN 2006ue), und 2007 sogar 572 (bis SN2007uz).

Häufigkeit

 

Die Supernovarate einer Galaxie hängt davon ab, wie viele Sterne dort neu entstehen, da die meisten Sterne, die in Supernovae enden, eine nach astronomischen Zeitmaßstäben nur kurze Lebensdauer von einigen zehn Millionen Jahren haben. Für die Milchstraße werden etwa 20 ± 8 Supernovae pro Jahrtausend geschätzt, wovon im letzten Jahrtausend sechs beobachtet wurden. Etwa zwei Drittel der galaktischen Supernovae blieben durch die Extinktion der galaktischen Scheibe verborgen; die übrigen beobachteten Supernovae fanden sich in anderen Galaxien.

 

In unserer Galaxie wurden die letzten, sogar freiäugig sichtbaren Supernovae 1572 von Tycho und 1604 von Kepler beobachtet. Eine sehr weit entfernte folgte noch 1680, war aber nur teleskopisch sichtbar. Für die moderne Astrophysik bedeutsam wurde hingegen die SN 1885A in der Andromedagalaxie und vor allem jene von 1987 in der relativ nahen Magellanschen Wolke.

Klassifikation

 

Man unterscheidet historisch grob zwei Typen von Supernovae. Die Einteilung erfolgt nach dem Kriterium, ob im Frühstadium der Supernova Spektrallinien des Wasserstoffs in deren Licht sichtbar sind oder nicht. Es gibt einerseits den Typ I, bei dem keine Wasserstofflinien sichtbar sind, mit den Untergruppen Ia, Ib und Ic; und andererseits den Typ II mit Wasserstofflinien (siehe Tabelle). Die groben Typenbezeichnungen wurden 1939 von Rudolph Minkowski eingeführt, seitdem wurden sie verfeinert.

 

Diese Einteilung in Typ I und Typ II deckt sich allerdings nicht mit den zwei in der Einleitung erwähnten physikalischen Mechanismen, die zu einer Supernova führen können. Vielmehr sind nur Supernovae vom Subtyp Ia thermonuklear.

Thermonukleare Supernovae vom Typ Ia

→ Hauptartikel: Supernova vom Typ Ia

Schematische Entwicklung der Vorgänger zur SN Typ Ia (von l. n. r. und v. oben n. unten)

Kurzfassung: Die 4 Stadien einer SN Typ Ia

(Innerhalb des Bildes den Link „Weitere Einzelheiten“ anklicken)

 

Eine Supernova vom Typ Ia entsteht nach dem derzeit bevorzugten Modell in kataklysmischen Doppelsternsystemen, die aus einem weißen Zwerg und einem Begleiter bestehen. Der Weiße Zwerg akkretiert im Laufe der Zeit Gas aus der ausgedehnten Hülle seines Begleiters, wobei es zu mehreren Nova-Ausbrüchen kommen kann. Bei diesen Ausbrüchen fusioniert der Wasserstoff des akkretierten Gases, die Fusionsprodukte bleiben zurück. Das setzt sich so lange fort, bis die Masse des Weißen Zwergs dessen Chandrasekhar-Grenze überschreitet und er durch seine Eigengravitation zu kollabieren beginnt. Im Gegensatz zum nicht reaktiven Eisenkern eines Typ-II-Vorläufersterns enthält der Weiße Zwerg jedoch große Mengen an fusionsfähigem Kohlenstoff, so dass beim Kollaps eine plötzliche Kohlenstoff-Kernfusion einsetzt und der Stern explodiert. Daher wird dieses Phänomen auch als thermonukleare Supernova bezeichnet.

 

Eine zweite Route zur Überschreitung der Chandrasekhar-Grenze können die Super Soft X-ray Sources (superweiche Röntgenquellen) sein. Hier ist die Massentransferrate zum Weißen Zwerg hoch genug, um zu einem permanenten Wasserstoffbrennen zu führen.[4]

 

Dieses Standardmodell geriet aber durch Beobachtungen des Röntgenteleskops Chandra in Bedrängnis. Messungen an sechs ausgewählten Galaxien zeigten, dass die weiche Röntgenstrahlung um den Faktor 50 geringer ist als der zu erwartende Wert, wenn Novae und Super Soft X-ray Sources die dominierenden Quellen für Supernova-Ia-Explosionen wären. Seitdem wird auch über andere Vorläufersterne spekuliert:

 

    einen Weißen Zwerg mit genau der Chandrasekharmasse

    den planetarischen Nebel des Zentralsterns

    ein Doppelsystem zweier Weißer Zwerge

 

Die beiden ersten Entwürfe sind aber mit der gegenwärtig akzeptierten Theorie der Sternentwicklung nicht verträglich.[5]

 

Der dritte wird auch als das „zweifach entartete Szenario“ bezeichnet. Dabei beginnt ein enges Doppelsternsystem aus Weißen Zwergen, Materie auszutauschen (sogenannte AM-Canum-Venaticorum-Sterne). Entweder überschreitet einer der Sterne die Chandrasekhar-Grenze (wie bei den kataklysmischen Doppelsternen), oder die Supernovaexplosion entsteht durch eine Verschmelzung der beiden Weißen Zwerge.

 

Unterschiedlichen theoretischen Modellen zufolge kann die Kernfusion sowohl als Detonation als auch als Deflagration ablaufen. Neueren Arbeiten[6] zufolge, die unter Experten heftig diskutiert werden, ist das wahrscheinlichste Szenario eine anfängliche Deflagration, die in eine Detonation übergeht. Andere Theorien sprechen von Magnetfeldern, denen die Explosionsenergie entnommen wird.

 

Die freigesetzte Energie einer Supernova-Explosion liegt innerhalb definierter Grenzen, da die Bandbreite der kritischen Masse sowie die Zusammensetzung Weißer Zwerge bekannt ist. Diese Eigenschaft wird als Standardkerze bezeichnet und eignet sich zur Entfernungsbestimmung (siehe unten).

 

Bei einer Supernova-Explosion vom Typ Ia bleibt kein kompaktes Objekt übrig – die gesamte Materie des Weißen Zwergs wird als Supernovaüberrest in den Weltraum geschleudert. Der Begleitstern wird zu einem sogenannten „Runaway“-Stern (engl. „Flüchtender“), da er mit der – normalerweise hohen – Orbitalgeschwindigkeit, mit der er seinen Partnerstern bislang umkreist hat, davonfliegt.

Kernkollaps- oder hydrodynamische Supernovae

Vorläuferstern

 

Nach der heute allgemein anerkannten Theorie vom Gravitationskollaps, die zuerst 1938 von Fritz Zwicky aufgestellt wurde, tritt eine Supernova dieses Typs am Ende des „Lebens“ eines massereichen Sterns auf, wenn er seinen Kernbrennstoff komplett verbraucht hat. Sterne mit Anfangsmassen zwischen 8 bis 10 und etwa 30 Sonnenmassen – wie unser Sonnenvorgänger – beenden ihre Existenz als Stern in einer Typ-II-Explosion, massereichere Sterne explodieren als Typ Ib/c. Supernovae vom Typ Ib oder Ic durchlaufen vor der Explosion eine Wolf-Rayet-Sternphase, in der sie ihre äußeren, noch wasserstoffreichen Schichten in Form eines Sternwinds abstoßen.

 

Bei ansatzweise kugelsymmetrischem Sternaufbau ergibt sich folgender Ablauf: Sobald der Wasserstoff im Kern des Sternes zu Helium fusioniert ist (Wasserstoffbrennen), sinkt der Innendruck des Sterns, erzeugt durch die zuvor freigesetzte Fusionsenergie, und der Stern fällt daraufhin unter dem Einfluss seiner Gravitation zusammen. Dabei erhöhen sich Temperatur und Dichte, und es setzt eine weitere Fusionsstufe ein, der Drei-Alpha-Prozess, in dem Helium über das Zwischenprodukt Beryllium zu Kohlenstoff fusioniert (Heliumbrennen). Der Vorgang (Erschöpfung des Kernbrennstoffs, Kontraktion, nächste Fusionsstufe) wiederholt sich, und durch Kohlenstoffbrennen entsteht Sauerstoff. Weitere Fusionsstufen (Neonbrennen und Siliciumbrennen) lassen den schrumpfenden Stern immer neue Elemente fusionieren. Allerdings setzt jede Fusionsstufe weniger Energie als ihr Vorgänger frei und läuft schneller ab. Während ein massereicher Stern von etwa acht Sonnenmassen einige zehn Millionen Jahre im Stadium des Wasserstoffbrennens verbringt, benötigt das folgende Heliumbrennen „nur“ noch wenige Millionen Jahre. Die letzte Fusionsstufe des Siliciumbrennens lässt sich in Stunden bis Tagen messen.

 

All diese Sterne durchlaufen während ihrer langen Lebenszeit in ihrem Kern die verschiedenen energiefreisetzenden Fusionsketten bis hin zur Synthetisierung von Eisen, dem Element mit der Ordnungszahl 26. Dort stoppt die Fusionskette, da Eisenatomkerne die höchste Bindungsenergie pro Nukleon aller Atomkerne haben. Fusionen zu schwereren Elementen verbrauchen dagegen Energie.

 

Die Geschwindigkeit, mit der ein Stern den Brennstoff in seinem Inneren umsetzt, hängt von der Temperatur und der Dichte und damit indirekt vom Gravitationsdruck ab, der auf seinem Kern lastet. Eine wichtige Konsequenz dieses Zusammenhangs ist, dass ein Stern aus Schichten besteht, in denen nach außen hin die Umsetzgeschwindigkeit abnimmt. Auch wenn im Kern schon das Heliumbrennen eingesetzt hat, erfolgt in den Schichten darüber noch Wasserstoffbrennen. Die absolute Fusionsgeschwindigkeit im Kern steigt mit zunehmender Sternenmasse stark an. Während ein Stern mit einer Sonnenmasse etwa 10 Milliarden Jahre benötigt, um die Fusionskette in seinem Kern bis zum Erliegen zu durchlaufen, liegt die Lebensdauer extrem schwerer Sterne mit etwa 100 Sonnenmassen nur noch in der Größenordnung von wenigen Millionen Jahren. Siehe Spätstadien der Sternentwicklung für einen genaueren Überblick.

Kernkollaps

Grafische Darstellung eines Kernkollapses

 

Das Eisen, die „Asche“ des nuklearen Brennens, bleibt im Kern des Sterns zurück. Sobald keine Fusionen mehr stattfinden, endet auch sämtliche Strahlung, die mit ihrem nach außen gerichteten Druck der Gravitation entgegengewirkte und den Stern aufblähte. Zwei weitere Prozesse verstärken diesen Effekt: Erstens werden durch Photonen hochenergetischer Gammastrahlung Eisenatomkerne mittels Photodesintegration zerstört. Dabei entstehen α-Teilchen und Neutronen; die α-Teilchen können ihrerseits durch solche Photonen in ihre Kernbausteine, Protonen und Neutronen, zerlegt werden. Aufgrund der hohen Stabilität von Eisenkernen muss für diesen Prozess Energie aufgewendet werden. Zweitens werden im sogenannten inversen β-Zerfall freie Elektronen durch Protonen eingefangen. Dabei entstehen weitere Neutronen, und Neutrinos werden freigesetzt (J. Cooperstein and E. A. Baron, 1990). Sowohl der Energieverlust durch die Photodesintegration als auch der Verlust freier Elektronen bewirken eine weitere Reduktion des der Gravitation entgegenwirkenden Drucks nach außen.

 

Nun kann sich die Gravitation voll auswirken. Schließlich überschreitet der Kern die Chandrasekhar-Grenze und kollabiert.

 

Der Kollaps des Zentralgebiets geschieht so schnell – innerhalb von Millisekunden –, dass die Einfallgeschwindigkeit bereits in 20 bis 50 km Abstand zum Zentrum die lokale Schallgeschwindigkeit des Mediums übersteigt. Die inneren Schichten können nur aufgrund ihrer großen Dichte die Druckinformation schnell genug transportieren. Die äußeren Schichten fallen als Stoßwelle in das Zentrum. Sobald der innere Teil des Kerns Dichten auf nuklearem Niveau erreicht, besteht er bereits fast vollständig aus Neutronen, denn die Elektronen werden in die Protonen gepresst (Umkehrung des Beta-Zerfalls). Neutronenansammlungen besitzen ebenfalls eine obere Grenzmasse (Tolman-Oppenheimer-Volkoff-Grenze, je nach Modell ungefähr 2,7 bis 3 Sonnenmassen). Damit nun eine Supernova entstehen kann, darf diese Grenzmasse nicht von dem entstehenden Neutronenkern überschritten werden. Der Kern wird aufgrund quantenmechanischer Regeln (Entartungsdruck) inkompressibel, und der Kollaps wird fast schlagartig gestoppt. Dies bewirkt eine gigantische Druck- und Dichteerhöhung im Zentrum, so dass selbst die Neutrinos nicht mehr ungehindert entweichen können. Diese Druckinformation wird am Neutronenkern reflektiert und läuft nun wiederum nach außen. Die Druckwelle erreicht rasch Gebiete mit zu kleiner Schallgeschwindigkeit, die sich noch im Einfall befinden. Es entsteht eine weitere Stoßwelle, die sich jedoch nun nach außen fortbewegt. Das von der Stoßfront durchlaufene Material wird sehr stark zusammengepresst, wodurch es sehr hohe Temperaturen erlangt (Bethe, 1990). Ein großer Teil der Energie wird beim Durchlaufen des äußeren Eisenkerns durch weitere Photodesintegration verbraucht. Da die nukleare Bindungsenergie des gesamten Eisens etwa gleich der Energie der Stoßwelle ist, würde diese ohne eine Erneuerung nicht aus dem Stern ausbrechen und keine Explosion erzeugen. Als Korrektur werden noch die Neutrinos als zusätzliche Energie- und Impulsquelle betrachtet. Normalerweise wechselwirken Neutrinos mit Materie so gut wie nicht. Jedoch bestehen in der Stoßfront so hohe Dichten, dass die Wechselwirkung der Neutrinos mit der Materie nicht mehr vernachlässigt werden kann.[7] Da von der gesamten Energie der Supernova der allergrößte Teil in die Neutrinos geht, genügt eine relativ geringe Absorption, um den Stoß wiederaufleben und aus dem kollabierenden Eisenkern ausbrechen zu lassen. Nach Verlassen des Eisenkerns, wenn die Temperatur genug abgesunken ist, gewinnt die Druckwelle zusätzliche Energie durch erneut einsetzende Fusionsreaktionen.

 

Die extrem stark erhitzten Gasschichten, die neutronenreiches Material aus den äußeren Bereichen des Zentralgebiets mit sich reißen, erbrüten dabei im sogenannten r-Prozess (r von engl. rapid, „schnell“) schwere Elemente jenseits des Eisens, wie zum Beispiel Kupfer, Germanium, Silber, Gold oder Uran.[8][9] Etwa die Hälfte der auf Planeten vorhandenen Elemente jenseits des Eisens stammt aus solchen Supernovaexplosionen, während die andere Hälfte im s-Prozess von masseärmeren Sternen erbrütet und in deren Riesenphase ins Weltall abgegeben wurde.

 

Hinter der Stoßfront dehnen sich die erhitzten Gasmassen schnell aus. Das Gas gewinnt nach außen gerichtete Geschwindigkeit. Einige Stunden nach dem Kollaps des Zentralbereichs wird die Oberfläche des Sterns erreicht, und die Gasmassen werden in der nun sichtbaren Supernovaexplosion abgesprengt. Die Hülle der Supernova erreicht dabei Geschwindigkeiten von Millionen Kilometern pro Stunde. Neben der als Strahlung abgegebenen Energie wird der Großteil von 99 % der beim Kollaps freigesetzten Energie in Form von Neutrinos abgegeben. Sie verlassen den Stern, unmittelbar nachdem die Dichte der anfänglich undurchdringlichen Stoßfront genügend klein geworden ist. Da sie sich fast mit Lichtgeschwindigkeit bewegen, können sie von irdischen Detektoren einige Stunden vor der optischen Supernova gemessen werden, wie etwa bei der Supernova 1987A.

 

Ein weiteres „Frühwarnsignal“ für das Aufleuchten einer Kernkollaps-Supernova ist ein sogenannter Röntgen-Outburst. Dieser tritt auf, wenn die Wellen der Stoßfront die Sternoberfläche erreichen und in das interstellare Medium ausbrechen – Tage bevor der Helligkeitsausbruch im sichtbaren Licht beobachtet wird. Erstmals wurde ein solches Röntgensignal im Januar 2008 mit dem NASA-Satelliten Swift bei der Supernova SN 2008D beobachtet.[10]

 

Supernovae des Typs II werden, da sie durch den Kollaps des Zentralgebiets bewirkt werden, auch als hydrodynamische Supernovae bezeichnet. Das dargelegte Szenario stützt sich auf den weitgehenden Konsens in der Wissenschaft, dass Supernovaexplosionen von massereichen Sternen prinzipiell so ablaufen. Es gibt jedoch noch kein geschlossenes und funktionierendes physikalisches Modell einer Supernovaexplosion, dem alle sich damit beschäftigenden Wissenschaftler zustimmen würden.

 

Eine Supernova in der Nähe belebter Planeten (Umkreis von etwa 50 Lichtjahren) hätte aufgrund der Strahlung verheerende Auswirkungen auf das dortige Leben.

Supernovatypen II-L und II-P

 

Supernovae vom Typ II werden nach dem Kriterium unterschieden, ob die Helligkeit der Supernova mit der Zeit eher linear abnimmt (Typ SN II-L) oder während des Abklingens eine Plateauphase durchläuft (Typ SN II-P). Die Spitzenwerte der absoluten Helligkeit zeigen bei SN II-P eine breite Streuung, während die meisten SN II-L fast gleiche Maximalhelligkeit besitzen. Die Helligkeit im blauen Spektralbereich von SN II-P erreicht im Mittel −17,0 mag mit einer Standardabweichung von 1,1 mag, während SN II-L meist bei −17,6 ± 0,4 mag liegen.[11] Die Existenz von Plateauphasen wird dadurch erklärt, dass die ausgestoßene Masse und damit die Geschwindigkeit der Hülle der Supernova sehr groß ist. Der Rückgang der Helligkeit aufgrund der Abkühlung wird durch die rasche Ausdehnung der Hülle wegen der dadurch vergrößerten Oberfläche kompensiert und die Lichtkurve wird durch ein Plateau beschrieben. Die maximale Helligkeit hängt dabei vom Radius des Vorgängersterns ab, wodurch die große Streuung in den Maximalhelligkeiten der SN II-P erklärt wird. Supernovae vom Typ II-L haben eine geringere Expansionsgeschwindigkeit, so dass ihre Helligkeit bereits in frühen Stadien von radioaktiven Prozessen bestimmt wird. Dadurch tritt eine geringere Streuung der Maximalhelligkeiten auf (Young, Branch, 1989). Die Supernova SN 1979C ist ein Beispiel für den Typ II-L. Hier nahm allerdings nur die Helligkeit im sichtbaren Licht ab; im Röntgenbereich strahlt die Supernova noch heute genauso hell wie bei ihrer Entdeckung 1979. Welcher Mechanismus diese andauernde Helligkeit verursacht, ist bis jetzt noch nicht vollkommen erforscht.

SN I: frühes Spektrum enthält keine Wasserstofflinien           SN II: frühes Spektrum enthält Wasserstofflinien

SN Ia: Spektrum enthält Silizium       Spektrum enthält kein Silizium          SN IIb: Heliumlinie dominant    „normale“ SN II Wasserstofflinien dominant

SN Ib: viel Helium            SN Ic: nur wenig Helium            SN II L: Licht geht nach Maximum linear zurück          SN II P: Licht bleibt nach Maximum eine Weile auf hohem Niveau

Supernovatypen Ib und Ic

 

Bei Supernovae vom Typ Ib ist vor der Explosion die Wasserstoffhülle abgestoßen worden, so dass bei der Explosion keine Spektrallinien des Wasserstoffs beobachtet werden. Der Explosionstyp Ic tritt auf, wenn zusätzlich noch die Heliumhülle des Sterns abgestoßen wurde, so dass auch keine Spektrallinien des Heliums auftreten. Auch diese Explosionen werden durch einen Kernkollaps hervorgerufen und es bleibt ein kompaktes Objekt zurück.

Supernovaüberreste

Falschfarbenbild des Krebsnebels, Überrest der Supernova aus dem Jahr 1054, die Farben entsprechen verschiedenen Bereichen des elektromagnetischen Spektrums von Infrarot bis zur Röntgenstrahlung.

 

Das bei der Supernova ausgeworfene Material bildet einen Emissionsnebel, den sogenannten „Supernovaüberrest“, im Gegensatz zum eventuell entstehenden Überrest des Kernkollapses, der in der Astrophysik als „kompaktes Objekt“ bezeichnet wird. Der wohl bekannteste Supernovaüberrest ist der Krebsnebel, der bei der Explosion der SN1054 ausgestoßen wurde. Diese Supernova ließ auch ein kompaktes Objekt (einen Pulsar) zurück.

Kompakte Objekte

 

Die Form des Überrestes, der von dem Stern zurückbleibt, hängt von dessen Masse ab. Nicht die gesamten äußeren Schichten werden bei der Supernovaexplosion fortgeschleudert. Das zurückbleibende Gas akkretiert auf den kollabierten Kern im Zentrum, der nahezu vollständig aus Neutronen besteht. Das nachfallende Gas wird durch die oben beschriebenen Prozesse ebenfalls in Neutronen zerlegt, so dass ein Neutronenstern entsteht. Wird der Stern durch das nachfallende Material noch schwerer (mehr als etwa 3 Sonnenmassen), so kann die Gravitationskraft auch den durch das Pauli-Prinzip bedingten Gegendruck überwinden, der in einem Neutronenstern die Neutronen gegeneinander abgrenzt und ihn dadurch stabilisiert (siehe Entartete Materie). Der Sternenrest stürzt endgültig zusammen und bildet ein Schwarzes Loch, aus dessen Schwerkraftfeld keine Signale mehr entweichen können. Neuere Beobachtungen legen die Vermutung nahe, dass es eine weitere Zwischenform gibt, die sogenannten Quarksterne, deren Materie aus reinen Quarks aufgebaut ist.

 

Neutronensterne rotieren aufgrund des Pirouetteneffekts oft mit sehr hoher Geschwindigkeit von bis zu 1000 Umdrehungen pro Sekunde; dies folgt bereits aus der Drehimpulserhaltung beim Kollaps.

 

Die hohe Drehgeschwindigkeit erzeugt ein Magnetfeld, das mit den Teilchen des abgestoßenen Gasnebels in Wechselwirkung tritt und deshalb Signale erzeugt, die auch von der Erde aus registrierbar sind. Im Falle von Neutronensternen spricht man dabei von Pulsaren.

Paarinstabilitätssupernova

 

Eine Variante des Kernkollapsszenarios besteht in der Paarinstabilitätssupernova[12] (pair instability supernova, PISN), bei der der Stern nicht zu einem kompakten Objekt kollabiert, sondern vollständig zerrissen wird. Die Vorläufersterne sind besonders arm an Elementen, die schwerer sind als Helium. Der Druck im Kern ist nicht hoch genug, um schwere Elemente wie Eisen bilden zu können, was die Voraussetzung für einen Kern-Kollaps ist. In dieser Phase gelangt der Stern nach dem Ende des Heliumbrennens in Temperatur- und Dichtebereiche, in denen die Photonenenergien zur Erzeugung von Elektron-Positron-Paaren führen. Dies führt zu einer Verringerung des Strahlungsdrucks und damit zu einer weiteren schnellen Erhöhung der Dichte – und damit der Temperatur – des Kerns, bis es zu einem explosionsartigen Einsetzen des Sauerstoff- und Siliciumbrennens kommt, das einen erneuten Gegendruck gegen den Gravitationsdruck aufbaut. Abhängig von der Größe des Gravitationsdrucks – und damit der Masse des Kerns – kann diese Kernexplosion den weiteren Kollaps verlangsamen oder sogar verhindern. Bei einer PISN entsteht kein kompakter Überrest, sondern der Stern wird vollständig zerrissen. Die dabei freiwerdenden Energien liegen mit bis zu 1053 erg (1046 J) um etwa einen Faktor 100 über denen einer „gewöhnlichen“ Kernkollapssupernova.

 

Modellrechnungen[12] für verschwindende Metallizität und ohne Berücksichtigung einer möglichen Rotation oder von Magnetfeldern liefern für das Einsetzen der Paarinstabilität eine kritische Masse des Heliumkerns von 64 Sonnenmassen. Wird die Masse des Heliumkerns größer als 133 Sonnenmassen, so kann die Kernexplosion den weiteren Kollaps nicht verhindern, der sich somit weiter zu einem Schwarzen Loch fortentwickelt. Rechnet man diese Helium-Kernmassen auf die notwendige Gesamtmasse eines Hauptreihensterns (unter Vernachlässigung von Massenverlusten) hoch, so ergibt sich für die PISN ein Massenbereich von etwa 140 bis 260 Sonnenmassen. Aus diesem Grund wird dieses Szenario im heutigen Universum als unrealistisch angesehen. In Betracht gezogen wird es vorwiegend bei der ersten Sterngeneration. Dort könnte dieser Mechanismus jedoch eine bedeutende Rolle bei der Anreicherung des intergalaktischen Mediums mit schwereren Elementen gespielt haben.

Lichtkurve von SN 2006gy (obere Kurve) verglichen mit den Lichtkurven anderer Supernovae

 

Einen Sonderfall stellt die Supernova SN 2006gy in der Galaxie NGC 1260 dar, die am 18. September 2006 im Rahmen des Texas Supernova Search entdeckt wurde: die absolute Helligkeit von SN 2006gy lag um mehr als eine Magnitude über der anderer Supernovae. Die Entdecker interpretieren diese etwa 240 Millionen Lichtjahre entfernte Supernova deshalb als ersten Kandidaten, für den der Paarinstabilitätsmechanismus als Erklärung möglich ist – allerdings sind weder das bisherige Datenmaterial noch die theoretischen Modelle ausreichend, um hier eine eindeutige Entscheidung treffen zu können.

 

Der erste wohl sichere Vertreter einer PISN ist die Supernova SN 2007bi, die sich am 6. April 2007 in einer Zwerggalaxie im Sternbild Jungfrau ereignete. Eine Gruppe von Astronomen vom Weizmann-Institut für Wissenschaften nutzte unter anderem die beiden Keck-Teleskope, um die Spektren und den Helligkeitsverlauf über mehr als ein Jahr lang zu beobachten. Die Untersuchungen ergaben, dass der Vorläuferstern des 1,7 Milliarden Lichtjahre entfernten Sternenrestes als Hyperriese mit vermutlich 200 Sonnenmassen ungewöhnlich massereich und metallarm war. Bei einem ungewöhnlich langsamen Verlauf wurden außerdem große Mengen an Silizium und radioaktivem Nickel freigesetzt.[13]

Entfernungsmessungen mit Hilfe von Supernovae

 

Da die Strahlung besonders im späteren Verlauf einer Supernova vom Typ Ia größtenteils durch den radioaktiven Zerfall von 56Ni zu 56Co und von diesem zu 56Fe gespeist wird, wobei die Halbwertszeiten etwa 6 beziehungsweise 77 Tage betragen (diese Theorie stellten zuerst Fred Hoyle und William Alfred Fowler im Jahre 1960 auf), ist die Form der Lichtkurve stets annähernd gleich. Auch die freigesetzte Energiemenge sollte, bedingt durch den Mechanismus, immer ungefähr gleich sein, was wegen des ungefähr gleichen Aufbaus eine immer ungefähr gleiche Leuchtkraft ergibt. Durch diese Eigenschaften einer Standardkerze lassen sich anhand solcher Supernova-Explosionen relativ genaue Entfernungsmessungen im Weltall vornehmen, wobei auch die Zeitskala der Lichtkurve neben den Spektrallinien zur Bestimmung der Rotverschiebung verwendet werden kann, da sich bei einer Rotverschiebung von z. B. 2 auch der zeitliche Ablauf für den Beobachter um diesen Faktor verlängert. Die Idee dazu geht auf Fritz Zwicky zurück. Durch die Entfernungsmessungen von Supernova-Explosionen, die sich vor ca. 7 Milliarden Jahren ereigneten, kann man die beschleunigte Expansion des Universums (siehe z. B. Hubble-Konstante oder Supernova Cosmology Project) belegen. Um Supernovae wirklich als Standardkerzen verwenden zu können, müssen die Explosionsmechanismen jedoch noch besser erforscht und verstanden werden.

Computersimulationen von Supernova-Explosionen

 

Seit Anfang des 21. Jahrhunderts ist es möglich, unter Zuhilfenahme von Supercomputern Supernova-Explosionen in Teilen dreidimensional zu simulieren. Bis dahin bereitete vor allem die Modellierung von thermonuklearen Explosionen Probleme, weil die dafür nötige hohe Brenngeschwindigkeit von einigen tausend Kilometern pro Sekunde nicht erreicht wurde. Eine Lösung des Problems deutet sich an, seit man mit der Berechnung von Flammenturbulenzen ähnlich den Vorgängen in einem Ottomotor arbeitet. Weiterhin schwierig ist die Berechnung der zugleich in sehr großen wie in sehr kleinen Maßstäben ablaufenden Vorgänge sowie die Tatsache, dass die Vorgänge möglichst dreidimensional darzustellen sind. Ein Hauptproblem aller Simulationen ist allerdings bis heute (April 2010) der unerreichte Übergang vom Kollaps zur eigentlichen Explosion. Laut der Astrophysikerin Fiona Harrison deutet dies auf unzureichende Kenntnisse der physikalischen Grundprinzipien hin und ist Gegenstand aktuellster Forschungen.[14]

 

Erste hydrodynamische numerische Rechnungen zu Supernova-Explosionen führten Stirling Colgate und Richard White am Lawrence Livermore National Laboratory 1966 aus und erkannten dabei auch die Bedeutung der Neutrinos für den Explosionsmechanismus. Weitere wichtige Fortschritte erzielte James R. Wilson Anfang der 1980er Jahre. Weitere bekannte Wissenschaftler, die sich mit Supernova-Simulationen beschäftigten, sind W. David Arnett, Stanford E. Woosley, Wolfgang Hillebrandt.

 

Die bislang aufwendigste Simulation wurde im Jahre 2004 am MPI für Astrophysik in Garching bei München durchgeführt. Dabei wurden in jedem Simulationsschritt 512³ Gitterpunkte berechnet, was einer Auflösung von wenigen Kilometern entspricht. Eine ganze Simulation dauerte 15.000 Prozessorstunden. Die Simulationen zeigen, dass die Entstehung turbulenter blasenartiger Strukturen wahrscheinlich ist, jedoch stimmen die Ergebnisse mit den derzeitigen Beobachtungen noch nicht befriedigend überein.

 

Andere Computermodelle beziehen auch die von emittierten Neutrinos gebildete Stoßfront ein, hier sind jedoch die Unzulänglichkeiten noch größer, was vor allem an der extrem hohen Zahl von Rechenoperationen liegt.

Auswirkungen auf die Erde

 

Der mögliche Ausbruch einer Supernova in der Nähe unseres Sonnensystems wird als erdnahe Supernova bezeichnet. Man geht davon aus, dass bei Entfernungen zur Supernova unter 100 Lichtjahren merkliche Auswirkungen auf die Biosphäre unseres Planeten eintreten würden. Die Gammastrahlung einer solchen Supernova kann chemische Reaktionen in den oberen Atmosphärenschichten auslösen, bei denen Stickstoff in Stickoxide umgewandelt wird. Dadurch könnte die Ozonschicht komplett zerstört werden, was die Erde gefährlicher Strahlung aussetzen würde.

 

Das Massenaussterben im oberen Ordovizium, bei dem etwa 50 Prozent der ozeanischen Arten ausstarben, wird von einigen Autoren mit einer solchen erdnahen Supernova in Verbindung gebracht.[15] Einige Forscher vermuten, dass eine vergangene erdnahe Supernova noch durch Spuren bestimmter Metallisotope in Gesteinslagen nachweisbar ist. Anreicherungen des Isotops 60Fe wurden beispielsweise in Tiefseegestein des Pazifischen Ozeans festgestellt.[16][17][18]

 

Potenziell am gefährlichsten sind vermutlich Supernovae vom Typ Ia. Da sie aus unauffällig erscheinenden, dunklen Weißen Zwergen hervorgehen, ist es denkbar, dass der Vorläufer einer solchen Supernova auch in relativer Erdnähe unentdeckt bleibt oder unzureichend studiert wird. Einige Vorhersagen deuten darauf hin, dass eine solche Supernova noch in Entfernungen bis zu 3000 Lichtjahren die Erde beeinflussen könnte.[19] Als erdnächster bekannter Kandidat für eine künftige Supernova dieses Typs gilt IK Pegasi in etwa 150 Lichtjahren Entfernung.[20]

 

Supernovae vom Typ II gelten hingegen als weniger gefährlich. Neuere Untersuchungen gehen davon aus, dass eine solche Supernova in einer Entfernung von weniger als 26 Lichtjahren aufleuchten muss, um die biologisch wirksame UV-Strahlung auf der Erde zu verdoppeln.[

Keine Kommentare:

Kommentar veröffentlichen

Hinweis: Nur ein Mitglied dieses Blogs kann Kommentare posten.